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INTRODUCTION

Residential segregation is an urban phenomenon in which
the population’s households are grouped in the physical space
according to some distinctive characteristics of the individuals,
such as ethnicity, income level, and language, among others.
This separation of the different socio-cultural groups in the ter-
ritory could generate inequalities in access to education, cul-
ture, health, and work opportunities. Moreover, the homoge-
nization of the terrain hinders social integration, and it becomes
further problematic when associated with stigmatization and
discrimination. However, it is also true that being surrounded
by similar peers is something positive for creating and sustain-
ing community ties and resolving daily life situations [7].

In this work, we study the mechanisms involved in residen-
tial segregation, exploring how the quality and characteristics
of the housing location may relate to the importance the in-
dividuals give to being surrounded by similar neighbors. We
have approached this problem from a social modeling per-
spective, proposing a variation of the well-known agent-based
Schelling’s segregation model [8] [9]. This classical model
consists of agents of two types arranged in a lattice network that
have a preference for being surrounded by some proportion of
agents of the same type and they can move from one location of
the lattice to another, in order to satisfy their preference. This
simple mechanism leads to different segregation patterns, even
for mildly discriminatory preferences. An extensive bibliogra-
phy from economics, mathematics, physics, and computation,
contributed to generate many variants of the model [2] [4].

We have introduced non-homogeneous locations in the
Schelling model as a weight function over the land (nodes).
This function represents objective and subjective valuations of
the territory and is related to the relevance that agents give to
their community ties. For example, places so prestigious or
with full resources and facilities allow individuals to live re-
gardless of their neighbors. Conversely, counting on neighbors
becomes crucial under challenging contexts, and ties become
relevant to survival. Thus, we define a field on the lattice nodes
that modulates the weight of the links.

We study the segregation patterns that arise for different
weight functions and show theoretical results that agree with
computational simulations [1]. Smooth spatial variations of the
weight function, with few minima and maxima, correspond to

more significantly segregated neighborhoods with clusters of
large scale.

In addition, we study the phenomenon from a data analy-
sis approach, using available Brazilian 2010 census data to vi-
sualize and quantify ethnicity-based segregation. Brazil’s Sao
Paulo and Rio de Janeiro cities allow us to connect the pro-
posed model with the observed patterns. Sao Paulo shows
large-scale segregation along all the city and Rio de Janeiro
conglomerates near the hills with a higher number of clusters
and segregation on a minor scale.

THE WEIGHTED SCHELLING MODEL

We have N agents located as nodes of a connected network
ΛN , without empty sites, so we will denote indistinctly by i, j,
. . . an agent and its location. A configuration is a function x :
ΛN →{−1,1}, assigning one of the labels ±1 to each node (the
state of the agent). We have two populations, corresponding to
agents of the same state.

A weight function is a bounded function w : ΛN → (0,M]
which assigns a positive real value to each node, bounded
above by some M ∈ R.

We define the neighborhood of a node i as the first neighbors
on the network, thus

Ni = { j ∈ ΛN such that 0 < d(i, j)≤ 1},

where d(i, j) is the usual distance between nodes i and j in a
network, is defined as the number of edges of the minimum
path between them.

Given a configuration x, we call U(x, i) the happiness or util-
ity of an agent located at node i, that depends on the weight w
and the configuration x restricted to i and its neighborhood Ni
in the following way:

U(x, i) =
1

(#Ni) M ∑
j∈Ni

w( j)x( j)x(i),

as #Ni is the number of nodes in Ni. The normalization factor
((#Ni) M)−1 implies that −1 ≤ U(x, i) ≤ 1 for every i ∈ ΛN
and every configuration x.

Finally, we introduce the Hamiltonian H (x), the opposite
of the mean happiness of a given configuration x, defined as

H (x) =− 1
N ∑

i∈ΛN

U(x, i).

It is useful to consider the formal correspondence between
particles trying to minimize the energy of the Hamiltonian, and



agents trying to maximize their utilities to define the system’s
dynamics. So, we fix some happiness threshold U0, and we say
that an agent located at i is unhappy if U(i)<U0. Then, given
some initial configuration x0, we update the configuration by
switching two unhappy agents, randomly selected, located at i,
j with different signs (i.e., x(i) · x( j) =−1).

The system will evolve until no unhappy agents can be
found, or all unhappy agents have the same sign, so no partners
are available for interchanging positions. We say that those fi-
nal configurations are the stationary states of the model, and
we can understand the stationary states as local minima of the
Hamiltonian H (x) for this dynamic. The final configurations
will show two or more clusters grouping agents of the same
type. We are interested in the kind of minima obtained for dif-
ferent weights w. Simulations show that lower local minima of
H are attained for slowly varying weights than for homoge-
neous weights over a region of the space.

RESULTS

We perform computational simulations of the model on one
and two-dimensional lattices with periodic boundary condi-
tions and for different weight functions. Each realization starts
from a uniformly random distribution of agents’ states. We
show results obtained for the case where the populations of
each type are of equal size and for a happiness threshold
U0 = 0. These results can be found in more detail in [1].

In Figure 1a we present final configurations for particular
realizations of the one-dimensional case for two families of
weight functions (w1

k , w2
k) that exhibit distinct number of os-

cillations over the 2500 sites. The black curve represents the
weight and, at the top, there is the stationary state where agents
in state 1 are blue and in state −1, red. In both cases, we see
how a higher number of oscillations (that increases with k) re-
late to a larger amount of clusters in the final configuration. The
segregation pattern shows small-scale clusters in this situation,
similar to the classical Schelling model with constant weight.

We also implement simulations over a two-dimensional
square lattice and weight functions that are constant over lat-
tice columns. In the upper panels of Figure 1b, we show typical
stationary states obtained for a square lattice of side 200, along
with the corresponding weight function in greyscale. We see
how few oscillations of the weight function (as in the left panel)
generate larger scale segregation than a higher oscillating func-
tion (as in the right panel). In both cases, a more fragmented
segregation pattern displays over the locally highly weighted
sites. To quantify this effect, at the bottom of Figure 1b, we in-
clude plots of the mean number of cluster boundaries (i. e. the
number of sign changes) within each lattice column, taken over
50 realizations with different initial distributions of the state of
the agents. It is remarkable how the peaks of the sign changes
per column coincide with the highest values of the weight.

In addition, we discuss some empirical examples. One of the
variables that could give traces of the model’s weight function
is the territory’s topography. The existence of hills, for instance,

favors a propensity to appreciate the relations with the neigh-
bors and to make communities [3].

In Figure 1c we present data on the topography, along with
information about the ethnic distribution, for some regions of
the Brazilian cities of Sao Paulo and Rio de Janeiro. In each
city, we analyze an area of equal surface, defined from a square
bounding box of 0.15 degrees on the sides of latitude and lon-
gitude. Rio de Janeiro shows more variability than Sao Paulo
in the topography. To visualize information about the ethnic
distribution of the population, we based on the IBGE (Brazil-
ian Institute of Geography and Statistics) Census 2010 source
[5]. The census provides geo-referenced data, at the census
tract level, of the self-declared ethnicity of each Brazilian cit-
izen (over five preset categories: White, Brown/Mixed, Black,
Asian, and Indigenous (see [6]). In Figure 1c, we color each
census tract according to its ethnic majority and observe dif-
ferent segregation patterns in each city. Although a quantitative
analysis requires considering the density of the different eth-
nicities and the size of populations, a preliminary comparison
of the ethnic segregation and topography maps could illustrate
the idea of the high variation of a weighting function (associ-
ated with the topology of territory), smaller clusters arise.

DISCUSSION AND FURTHER WORK

Our model connects the traditional Schelling model where
an agent wants to be surrounded by neighbors from the same
group with a weight function associated with the relevance that
the agent assigns to being surrounded by agents of the same
type, which depends on each location. Hence, some places are
relatively more important than others for establishing possible
ties. Apart from the topography, another possible empirical in-
terpretation of this weight function is the inverse of the price
of land or real estate that each place represents. Another one is
the inverse of the prestige of the area, the number of available
resources, high provision of public goods, facilities, cultural
and educational opportunities, transportation accessibility for
the rest of the city, green spaces, and, from an aesthetics point
of view, beauty areas. These general facilities are inverse to the
weight functions of the places. And when these facilities are
absent, the weight function takes a high value and the impor-
tance of ties to survive, too.

Under this rule, our model predicts two types of segrega-
tion patterns: a) higher spatially oscillations of the weighting
function are associated with segregation levels similar to small
patches or ghetto’s formation, with clusters of smaller size; b)
oscillations of the weighting function in the space corresponds
to significantly segregated neighborhoods, with clusters of big
size.

In what follows, we intend to apply the model to irregu-
lar networks that are more realistic and capture relevant geo-
graphic information about specific cities. Also, we plan to ad-
vance in the characterization and quantification of residential
segregation based on census tract information, considering the
distribution of socio-cultural groups of each census tract, not



Fig. 1: (a) Stationary states on a one-dimensional lattice with N = 2500 nodes, happiness threshold U0 = 0 and two families of oscillating weight functions (black
curves). Top: final configuration, where agents in state 1 are blue and in state 1, red. (b) Stationary states on a squared lattice of side 200. The weight functions are
at the top in greyscale; at the bottom, the mean number of sign changes within each column taken over 50 realizations with different initial distributions of agents

states. (c) Topography maps and distribution of majority ethnicity according to 2010 Census for urban areas of Sao Paulo and Rio de Janeiro.

only individually but also concerning its neighboring tracts.
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